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Abstract
Exotic willows (Salix spp.) are widespread riparian tree species of rivers in temperate Australia and NewZea-

land. Despite being a Weedof National Significance, little is known about the novel habitats created by willows

and the impact on aquatic biota of vegetation change following willow management programs. Reeds ( Phrag -

mites australis ) and shrubs ( Leptospermum spp. and Callistemon spp.) are common taxa in the riparian zone of

Victorian streams and are considered suitable for planting along channels in revegetation programs following

willow removal. Categorisation of macroinvertebrates into ‘trophic’ groups allows better understanding of the

processes of energy flow, material cycle and stream ecosystem function. Macroinvertebrate functional feeding

groups associated with willow, Phragmites australis , Leptospermum/ Callistemon and bare bank habitats were
examined in three central Victorian streams to gain insights to potential effects of willow removal on function-

al organisation of macroinvertebrates. There was a significant effect of habitat on macroinvertebrate functional

feeding groups except collectors. Notable differences in functional feeding groups included a greater abun-

dance of predators and grazers in Phragmites habitats and a greater abundance of shredders in willow habitats;

however, these changes were variable during different seasons. It appears riparian vegetation change associated

with willow management could bring about change of functional organisation of macroinvertebrates in these

streams. This suggests that the vegetation changes can bring about changes in material cycle and energy flow

within these streams. (7 he Victorian Naturalist 127 (2) 2010, 36-48)

Keywords: Phragmites , willow (Salix spp), Leptospermum , Macroinvertebrates, Functional

feeders

Introduction

Categorisation of macroinvertebrates into

‘trophic’ groups allows better understanding

of the processes of energy flow, material cy-

cling and stream ecosystem function (Cum-
mins 1973). These groups include: (1) grazers:

which are adapted to graze or scrape material

(periphyton or attached algae and its associated

microbiota) from mineral and organic sub-

strates; (2) shredders: organisms that feed pri-

marily on large pieces of decomposing vascular

plant tissue (>1 mmdiameter) along with the

associated microflora and fauna; (3) gatherers

or collectors: animals that feed primarily on

fine particulate organic matter (<1 mmdiam-

eter) (FPOM) deposited in streams; (4) filter-

ers: animals with specialised anatomical struc-

tures (e.g. setae, mouth brushes, fans etc.) or

silk suspension (Wallace and Merritt 1980) and

(5) predators: organisms that feed primarily on

animal tissue by either engulfing their prey or

piercing and sucking body contents.

The River Continuum Concept (RCC) pro-

posed by Vannote et al. (1980) has led to a

number of generalisations about spatial and

temporal patterns in the functional organisa-

tion of stream communities. Several studies

in the Northern Hemisphere have shown that

the life histories of many invertebrate species

are closely linked to the autumnal leaf fall pat-

tern of riparian vegetation (Petersen and Cum-
mins 1974; McArthur et al. 1988) and suggest

this pulse of energy benefits shredders in par-

ticular. Riparian vegetation also has a direct

influence on primary production in streams,

hence an indirect influence on secondary pro-

duction through the effect of shading (Quinn

et al. 1997). Many studies found that grazers

are more responsive to an increase in primary

production (Glova and Sagar 1994; Lester et

al. 1994). These findings suggest that changes

in riparian vegetation composition have a sig-

nificant influence over the macroinvertebrate

community composition and their functional

organisation in streams.

Exotic willows have successfully colonised

and become naturalised along many riverbanks
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in temperate Australia (Ladson et al. 1997). It is

estimated that willows have spread across ap-

proximately 30 000 km of the 68 000 km river

frontage in Victoria (Ladson et al 1997). Wil-

lows are considered a Weed of National Sig-

nificance in Australia and willow management
strategies recommend their removal as the pre-

ferred and generally only management option

(National Weeds Strategy Executive Commit-
tee 2000). Revegetation is encouraged follow-

ing removal. Phragmites australis is one of the

commonnative reeds of open streams and wet-

lands worldwide (Sainty and Jacobs 1981). In-

vasion of Phragmites in open reaches with low

riparian vegetation cover has been observed

in many river catchments in Victoria (CALP
1997) and redistribution of Phragmites in riv-

ers managed by irrigation has been observed

in south-eastern Australia (Roberts 2000). In

addition, Phragmites sometimes has been used

during revegetation. The nature and avail-

ability of Phragmites ,
therefore, increases the

likelihood that it will be a coloniser of banks

following willow removal. Native shrubs such

as Leptospermum spp. and Callistemon spp. are

commonin many temperate Australian streams

and are a significant component in the riparian

zone of streams where willows are removed. It

can be expected that such changes in riparian

vegetation can significantly influence the mac-

roinvertebrate functional organisation in these

streams; however, empirical evidence is scant.

In Australia, evergreen native vegetation has

a continuous leaf fall through the year, usually

with a peak around late summer (Campbell

et al 1992; Swain et al 1993). This provides a

continuous food source for macroinvertebrates,

which presumably have adapted to this pattern

of litter distribution. According to Vannotes

prediction, shredders in Australian streams

must occur at greatest densities during sum-

mer and autumn, just after the major litter fall.

By contrast, introduced willows are deciduous,

dropping all their leaves in autumn over a rela-

tively short period of time. Their leaves break

down faster than those of many native species

(Pidgeon and Cairns 1981; Yeates 1994). It was

suggested that invasion of exotic willows along

many river catchments has led to changes in the

community organisation of macroinvertebrates

that were previously adapted to a continuous

energy supply from native riparian tree species

(ARMCANZ2000). It can be expected that de-

ciduous willows contribute a pulse of leaf litter

input to streams during autumn, which could

contribute to the increase of shredder abun-

dance during those seasons. Reeds can be ex-

pected to provide habitats for filter feeders and

suspension feeders due to their retention char-

acteristics (Weinstein and Balletto 1999; Rooth

and Stevenson 2000). Predators are also an im-

portant component in the functional organisa-

tion of communities in streams. Evidence sug-

gests that certain habitats, such as those with

macrophytes, facilitate predator abundance

in streams, more so than other habitats, e.g.

those with little or no macrophytes (Tokeshi

and Pinder 1985). Therefore, it is important to

explore how vegetation transition processes fa-

cilitate predator abundance. Leptospermum and

Callistemon are common shrubs along many
Victorian streams and provide year-round leaf

litter input to these streams; however, their

contribution to functional feeding groups of

macroinvertebrates is unknown. The aim of

this study was to determine the likely change

in macroinvertebrate functional feeding groups

after willow removal in three Victorian creeks.

This information then could be used to predict

the consequences of willow removal on macro-

invertebrate functional feeding groups.

Methods
Study sites

Three creeks were investigated: birch Creek;

Jim Crow Creek; East Moorabool Creek. Birch

Creek, located in the north central region of

Victoria, is a major tributary of the northward

flowing Tullaroop Creek system in the upper

catchment of the Loddon River. The riparian

vegetation includes native Eucalyptus spp., Aca-

cia spp., Callistemon spp., Leptospermum spp.

and exotic Salix spp. (willows), with intermit-

tent reed dominant stretches. The dominant
land uses adjacent to the creek are grazing and
cropping. Jim Crow Creek is also a tributary

of the Loddon River, containing native vegeta-

tion, exotic willows and intermittent reed beds.

It largely flows through public land. The East

Moorabool is a branch of the Moorabool River,

which originates in the Great Dividing Range
in Central Victoria. It flows through native

forest and agricultural areas and has stretches

dominated by willows and Phragmites.
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Sampling
Six sites (each a 100 m reach) were sampled
from each of the three creeks, two sites per
creek. Each site had stretches of willows, Lept-

ospermum/Callistemon
, P. australis and bare

banks. Six random samples were collected

from each of these four ‘habitat types’ during
each season of 2004: early February, May, Au-
gust and October. Sampling occurred within
three consecutive days to counteract the effect

of within season variation. A total of 576 sam-
ples (6 sites x 4 habitats x 6 samples x 4 seasons)
were collected. Leptospermum and Callistemon

were considered as defining one habitat repre-

senting shrubs as both were distributed com-
monly along banks at most sites. The channel
features and bank characteristics of sampling
sites are given in Table 1

.

Samples were collected using a 20 cm x 20 cm
horizontal metal frame attached to a sampler
with a 250 pm mesh net (Surber sampler). The
area inside the sample frame was excavated to

a 5 cm depth and the whole sample, together

with the portion retained in the net as a result

of site disturbance, was collected and sealed in

polythene bags. Fringing willow roots, which
extended from the bank, were sampled after

cutting the root fraction inside the metal frame
of the sampler. Leptospermum/ Callistemon

roots were not as extensive as willow roots,

and were more lignified and compactly struc-

tured. Sampling of Leptospermum/ Callistemon

roots followed the same collection technique.

Phragmites was sampled after cutting the above
ground portion of the plant and collecting the

ground fraction within the sample frame. Any
macroinvertebrates attached to stems were
washed off and included in the sample. All sam-
ples were transported to the laboratory for sort-

ing. Dissolved oxygen, pH, conductivity and
temperature were measured in situ immediately

prior to sampling using TPS field probes (TPS,

MC81, Brisbane, Australia). Flow and depth
also were recorded. In the laboratory, samples
were sieved (minimum sieve size 250 pm) and
macroinvertebrates separated and preserved in

70% alcohol. Macroinvertebrates were iden-

tified to species where possible (Pinder and
Brinkhurst 1994; Cranston 1996; Dean and
Suter 1996; Smith 1996; CSIRO 1999; Good-
erham and Tsyrlin 2002). Information from a

number of sources was used to partition the in-

vertebrate fauna into five major feeding catego-

ries, viz shredders, collectors, predators, grazers

and filter feeders (Merritt et al 1984; Hauer and
Lamberti 1996; Gooderham and Tsyrlin 2002).
The live root fraction was removed from the

sample and the remainder of the sample was
divided into coarse particulate organic matter
(>1 mm) (CPOM) and fine particulate organic
matter (1 mm-250 pm) (FPOM), air dried for

one day and oven dried at 105°C until constant
weight was attained. After recording the dry
weight, each fraction was ashed at 550°C for six

hours and ash free dry weight (AFDW) deter-

mined.

Analysis

Two-way ANOVAwas used to analyse data.

The factors considered in the model were sea-

son and habitat. During the study, 92 macroin-
vertebrate taxa were recorded. Univariate tests

were conducted using the general linear mod-
els procedure in the SPSS statistical package.

Data were log transformed before analysis to

maintain homogeneity of variance. Posterior

pair-wise comparisons (Tukey s post hoc test)

were conducted to estimate differences among
groups in selected factors identified as signifi-

cant in the ANOVA.

Results

Physical and chemical parameters associated

with sampling sites

Habitat scale variations of temperature, pH,
conductivity and dissolved oxygen were not
significant; however, these parameters varied

significantly between streams (Table 2) and
seasons. In all sites (Fig. 1), maximum tem-

peratures were recorded during summer and
minimum values were recorded during winter.

Conductivity also followed the same trend, with
higher values during summer and lower values

during winter and spring. Dissolved oxygen was
mostly lower during summer and autumn and
increased during winter and spring. Stream flow

was higher during winter and spring in Birch

Creek and Jim Crow Creek. Moorabool sites re-

mained stagnant throughout the experimental

period except for a slight increase in flow dur-

ing spring. In Phragmites habitats, lower local

flow was recorded in many sites during high

flow seasons, and it was higher in bare banks.

There was a significant (p<0.05) increase in

CPOMcontent in Phragmites habitats in most
sites compared to other habitats during winter

and spring, and in willow habitats during au-
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Table 1. Channel features and bank vegetation characteristics of study sites (W
Leptospermum/ Callistemon; B = bare banks.

= willows; P = Phragmites; L =

Site Length
(m)

Mean
Width
(m)

Mean
Depth
(cm)

dominant substrate at %bank cover

W P L B Other

1 120 6 31 Gravel/cobble 20 15 20 20 25

2 100 3 25 Silt/gravel/clay/scattered

grass

15 25 15 30 15

3 120 5 29 Gravel/cobble/scattered

grass

20 10 20 30 20

4 100 5 27 Sand/gravel/cobble 20 20 18 17 35

5 100 6 29 Silt/clay/ gravel/coarse

woody debris and
scattered grass

15 18 23 15 29

6 100 7 34 Silt/clay/gravel/abundant

plant debris/many grass
18 17 30 15 20

Table 2. Physical and chemical parameters recorded

recorded from study sites within streams).

in streams during the experimental period (values were

Parameter Range

Birch Creek Jim Crow Creek Moorabool

Temperature (°C) 9.3-20.4 8.1-24.4 8.4-18.9

Conductivity (pS/cm) 179-1763 38-559 378-545

PH 7. 7-7.

9

7. 8-8.

8

7.6-8.

1

Dissolved oxygen (mg/L) 5.3-12.8 5.9-14.2 4.3-12.4

Average flow (m/sec) 0-2.0 0-2.0 0-0.5

tumn. In Leptospermum habitats, higher CPOM
was recorded during summer in most sites com-

pared to winter and spring. Higher FPOMwas

recorded in Phragmites habitats compared to

other habitats in many sites. In willow and Lept-

ospermum habitats, more stable levels of FPOM
were recorded in many sites (Fig. 2).

Macroinvertebrate functional feeding groups

associated with habitats

Shredders

There was a significant effect (p<0.05) of habitat

on shredder abundance (Table 3). In all seasons,

shredder abundance was highest in willow hab-

itats (Fig. 3). This increase was more prominent

during spring. In the other three habitats, more

or less similar numbers of shredders were ob-

served. In all habitats, Hyalidae and Parameliti-

dae were the dominant families, contributing to

more than 90% of the shredder abundance.

Predators

There was a significant effect of habitat (p<0.05)

on predator abundance (Table 3). In all sea-

sons, except summer, predator abundance was

highest in Phragmites habitats. During summer,
Leptospermum and bare banks had higher pred-

ator abundance. Major taxa that contributed

most to the predator abundance in Phragmites

habitats were Tanypodinae (42.69%), Coena-
grionidae (25.44%) and Ecnomus sp. (6.39%).

In bare banks, Corixidae (adult and nymph)
(31.73%), Necteresoma sp. (20.53%) and Tany-

podinae (18.66%) were the major predators.

Grazers

Habitat also showed a significant association

(p<0.05) with the abundance of grazers. Grazer

abundance was also higher in Phragmites habi-

tats. This was more prominent during autumn,
winter and spring seasons. However, in willow

habitats, the highest number of grazers was re-
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CPOM

FPOM

Fig.2. Mean ± SE of coarse particulate organic matter (CPOM) and fine particulate organic matter

(FPOM) in habitats during different seasons. P = Phragmites; W= willow; L = Leptospermum/Cal-
listemon

; B = bare bank. BC=Birch Creek; JCC= Jum Crow Creek; MR=Moorabool River.

corded during autumn. Major taxa contributing

to total grazer abundance in willow habitats were

Potamopyrgus antipodarum (45.22%), Glypto-

physa sp. (15.08%), Orthocladiinae (14.32%)

and Physa acuta (12.54%). During summer and
autumn, Potamopyrgus antipodarum and Physa

acuta contributed 53% and 14.5% respectively

to the total grazer abundance in willow habi-

tats. In Phragmites habitats major taxa, which
contributed to total grazer abundance, were
Hydroptilidae (22.09%), Physa acuta (18.14%)
and Glyptophysa sp. (17.06%).
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Fig. 3. Mean ± SE of (a) shredders, (b) predators, (c) grazers

associated with habitats during different seasons. P = Phrag-

mites; W= willow; L = Leptospermum/ Cal l istemon; BB =

bare bank.
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Fig. 3. Mean ± SE of (d) filter feeders (e) col-

lectors associated with habitats during differ-

ent seasons. P = Phragmites; W= willow; L =

Leptospermum/Callistemon
;
BB = bare bank.

Filter feeders

There was a significant association (p<0.05)

between habitat and the abundance of filter

feeders (Table 3). Notable increase in filter

feeders was observed in Leptospermum/Cal-

listemon habitats during autumn, winter and
spring. Bare banks and Phragmites habitats also

showed marked increases in filter feeders. In

Phragmites habitat, Pisidium sp. (55.53%) and
Sphaerium sp. (38.54%) were the major filter

feeder taxa. Simulium sp. (45.96%), Sphaerium
sp. (15.38%) and Pisidium sp. (12.82%) contrib-

uted most to filter feeder abundance; however,

Simuliidae were more abundant during winter

and spring, contributing 91.93% and 75.00%
respectively with lowest values during autumn
(4.65%). Sphaerium sp. and Pisidium sp. per-

centages were highest during summer (41.51%
and 35.85% respectively) in willow habitat. In

Leptospermum/Callistemon and bare bank hab-

itats, Sphaerium sp. and Pisidium sp. were the

most abundant filter feeding taxa. Simulium sp.

also was abundant in bare banks during winter

and spring.

Collectors

There was no significant association between

habitats and the abundance of collectors (Ta-

ble 3). Major families contributing to collector

abundance in Phragmites habitat were Wun-
dacaenis sp. (45.83%), Chironominae (17.88%)

and Tasmanocoenis sp. (11.91%). Major fami-

lies contributing to collector abundance in

willow habitats were Chironominae (24.71%),

Wundacaenis sp. (23.31%), Tasmanocoenis

sp. (14.11%) and Elmidae larvae (11.84%).

The highest percentage of Chironomidae

was recorded in willow habitat during winter

(56.29%). In Leptospermum/Callistemon habi-

tats, Wundacaenis sp., Chironominae, Elmidae

larvae and Tasmanocoenis sp. contributed more
than 75% of the total collector abundance. In

bare bank habitats, Wundacaenis sp., Chi-

ronominae, Tasmanocoenis sp. and Tubificidae

contributed more than 80%of the total collector

abundance. In Phragmites habitats, there was a

seasonal increase of collectors during winter

and spring in many sites compared to summer
and autumn. A similar trend was observed in

bare bank habitats during spring.

Discussion

A positive correlation between shredders and
CPOMcontent has been reported by many
authors (Dudgeon, 1989; Read et al . , 1994). As
suggested by Vannote et al (1980), shredder

abundance is closely related to the autumn leaf

fall pattern of forested streams in the Northern

Hemisphere. Cummins et al. (1989) suggested

that shredders are closely linked to the timing

of litter inputs; however, contrary to this, Bunn
(1986) found the abundance of shredders was
not synchronised with peak summer leaf fall.

Further, Barmuta (1988) found low correlations

between surface organic matter and density of

shredders in South Australian streams, and
Towns (1985) noted that few taxa were using

leaf litter in the pools of intermittent streams;

however, the present study showed no clear re-

lationship between organic matter content and
shredder abundance in these habitats. Despite

the higher leaf litter input during winter and
spring, no significant increase in the abun-
dance of shredders was observed in Phragmites

habitat during those seasons. Similarly, in wil-

low habitats, higher organic matter content was
observed during autumn; however, no increase

in shredder abundance was observed during

autumn. Many factors affect the leaf organic
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matter utilisation by shredders. Leaf tough-

ness has been implicated as a deterrent to con-
sumption of eucalypts by terrestrial herbivores

(Ohmart et al 1987). Hanlon (1981) noted that

disruption of leaf surface by abrasion increased

both the preference and growth of the hydro-
biid snail Potamopyrgus jenkinsi (Yeates and
Barmuta 1999). Some studies have shown that

most invertebrates find willow detritus becomes
more attractive when it has been conditioned

for some time (Collier and Winterbourn 1986;

Lester et al. 1994). This has been related to in-

creased microbial conditioning (Collier and
Winterbourn 1986) or the removal of second-

ary compounds that affect invertebrate feed-

ing (Lester et al. 1994). There is also evidence

to suggest that water quality has a profound
influence over the microbial decomposition of

leaves, thereby reducing microbial activity and
reducing consumption by shredders (Barlocher

1990; Sridhar and Barlocher 1993). These fac-

tors may have contributed to the poor correla-

tion between CPOMand shredder abundance
associated with the habitats. It has been seen

that there is an increase in shredders in willow

habitats during spring. None of the other habi-

tats showed such an effect. It is possible that

habitat architecture plays an important role in

habitat selection by particular groups of shred-

ders. It is possible that refuge sites provided by
structurally complex willow root mats favour

their abundance in this habitat to escape from
adverse physical forces such as strong cur-

rents. Possibly, decomposing willow root mats

provide favourable habitats for shredders in

these streams. This emphasises the importance

of willow root habitats as refuges for certain

groups of macroinvertebrates.

As previously predicted, predator abundance
recorded in Phragmites habitat was higher com-
pared to other habitats during all seasons ex-

cept summer. Predator abundance recorded in

bare bank habitats was also higher during sum-
mer. Taxa responsible for predator abundance

in each habitat type were different. It is evident

that predators in these two habitats during dif-

ferent seasons may be related to the emergence

pattern of the taxa associated with these habi-

tats. Some effects of habitats on predators are

due to the differences in depth of each habitat.

Coleoptera and Hemiptera were more abun-

dant in bare banks and associated with shallow

habitats, whereas in Phragmites habitat one of

the common groups of predators, Odonata,
was found in relatively deeper depths. This sug-

gests that habitat depth acts as a separate niche

space, which may reduce the degree of compet-
itive interactions for food in the predator guild

(Schmid and Schmid- Araya 1997).

Higher water temperature and light intensity

during summer were found to stimulate primary
production and lead to an increase in the abun-
dance of grazers (Minshall 1978; Vannote et al

1980)

. Even though grazers were expected to be
more abundant in bare banks, grazer abundance
was higher in Phragmites habitats compared to

other habitats in all seasons except summer. As
expected, grazer abundance in willow habitat

was lower during summer. However, a relative

increase in grazer abundance could be observed

during autumn. It is possible that increased

shade under the willow due to full canopy cover

during summer hinders the light penetration

to the channel, reducing primary production

and hence causing a reduction in grazers. Not
only primary production but other factors, such

as bio-film attached to leaf matter and roots,

contribute to the abundance of grazers (Lock

1981)

. This must be one of the reasons for the

increased number of grazers recorded in wil-

low habitats during autumn and in Phragmites

habitats during autumn, winter and spring. The
major group contributing to grazers in willow

habitats was Potamopyrgus antipodarum. Physa

acuta , an organic pollution tolerant taxon also

contributed to the abundance of grazers in wil-

low habitats. Physa acuta also contributed to

grazers in Phragmites habitats but were most
abundant during winter and spring, possibly

due to increased organic matter content during

these seasons. In Phragmites habitats, Hydrop-
tilidae were the dominant grazers during sum-
mer, possibly because of low flow and increased

attachment sites available to this taxon.

Filter feeders feed on suspended particulate

matter. Flow increases the suspended particu-

late matter in streams and facilitates filter feeder

abundance (Parker and Voshell 1983). In the

present study, filter feeders were more abundant

in Phragmites , Leptospermum/Callistemon and

bare bank habitats; however, the reason for the

increase of filter feeders in Leptospermum/Cal-

listemon and bare banks habitats was not clear.

Collectors are considered to be the indicators

of FPOMcontent in streams. They were found

to be dominant in headwater streams by Cum-
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mins (1974) and Hawkins and Sedell (1981).

Summer low flows facilitate the settling of

FPOMand have been found to increase collec-

tor abundance (Bunn 1986). Huryn and Wallace

(1987) suggested that collectors and shredders

are more common in low velocity high reten-

tion pools. Read and Barmuta (1999) surveyed

nine rivers in south-eastern Tasmania to iden-

tify the differences between reaches of river lined

with willows and those with native vegetation in

community structure of benthic invertebrates

and the resources these plants use. This study re-

vealed that willow roots enhance deposit feeding

collectors during summer due to fine sediment

in these habitats due to summer low flow. In

the present study, collector abundance showed

no significant variation among habitats. Flow

exerts a positive effect on collector abundance

because they depend on downstream transport

of material. It can be assumed that invertebrate

functional feeding groups associated with mid-

dle channel habitats such as pools and riffles are

significantly affected by flow frequencies at site

scale. In the present study, sampled habitats were

in a depositional littoral zone where the flow ef-

fect is relatively low. This may have also contrib-

uted to the little differences observed in collector

abundance among habitats in the present study.

Many authors have suggested that Phragmites

habitats are favourable for macroinvertebrates

due to reduced flow and the settling of particu-

late matter and sediments (Weinstein and Bal-

letto 1999; Rooth and Stevenson 2000); however,

no such association between Phragmites habi-

tats and collectors was observed. In all habitats,

Ephemeroptera and Chironominae were the

major groups contributing to total abundance

of collectors. In willow habitats, Elmidae, and in

bare banks, the Tubifkidae, also contributed sig-

nificantly to the total abundance of collectors. A
significant increase in Chironomidae percentage

also was observed in willow habitats during win-

ter; however, the reason for this increase was not

clear. It is possible that some of the accumulated

leaves, after conditioning in those habitats, facili-

tate Chironomidae abundance in those seasons

under willows. In bare banks Tubifkidae per-

centage also increased during winter and spring

compared to other seasons. It is possible that re-

distribution of particulate organic matter due to

onset of flow may have facilitated this increase.

In summary, this study showed that the differ-

ent vegetation communities investigated have

significant influence over the functional organ-

isation of macroinvertebrates in these streams.

There were some trends, which could be ob-

served in this study, which facilitated the bet-

ter understanding of functional feeding group

variation among habitats. In all habitats, shred-

ders were the most abundant group recorded. A
major distinction in functional feeding groups

was observed in willow and Phragmites habi-

tats. In willow habitats, shredders were more

abundant. In Phragmites habitats, the major

difference was predator and grazer abundance.

Leptospermum/Callistemon and bare banks

showed similarities in terms of filter feeder

abundance. Collectors showed no clear habitat

specific distribution. This suggests that vegeta-

tion changes from willow removal can change

macroinvertebrate functional organisation, as

well as bring about change in the material cycle

and energy flow within these streams.
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